首頁 > 民俗頻道 > 風俗細説 > 正文

[天工開物]千古絕技——割圓術 

央視國際 (2004年07月16日 16:40)

  “圜,一中同長也”。意思是説:圓只有一個中心,圓周上每一點到中心的距離相等。早在我國先秦時期,《墨經》上就已經給出了圓的這個定義,而公元前11世紀,我國西周時期數學家商高也曾與周公討論過圓與方的關係。認識了圓,人們也就開始了有關於圓的種種計算,特別是計算圓的面積。我國古代數學經典《九章算術》在第一章“方田”章中寫到“半周半徑相乘得積步”,也就是我們現在所熟悉的這個公式。為了證明這個公式,我國魏晉時期數學家劉徽于公元263年撰寫《九章算術注》,在這一公式後面寫了一篇1800余字的注記,這篇注記就是數學史上著名的“割圓術”。


  根據劉徽的記載,在劉徽之前,人們求證圓面積公式時,是用圓內接正十二邊形的面積來代替圓面積。應用出入相補原理,將圓內接正十二邊形拼補成一個長方形,借用長方形的面積公式來論證《九章算術》的圓面積公式。劉徽指出,這個長方形是以圓內接正六邊形周長的一半作為長,以圓半徑作為高的長方形,它的面積是圓內接正十二邊形的面積。這種論證“合徑率一而弧周率三也”,即後來常説的“週三徑一”,當然不嚴密。他認為,圓內接正多邊形的面積與圓面積都有一個差,用有限次數的分割、拼補,是無法證明《九章算術》的圓面積公式的。因此劉徽大膽地將極限思想和無窮小分割引入了數學證明。他從圓內接正六邊形開始割圓,“割之彌細,所失彌少,割之又割,以至不可割,則與圓周合體,而無所失矣。”也就是説將圓內接正多邊形的邊數不斷加倍,則它們與圓面積的差就越來越小,而當邊數不能再加的時候,圓內接正多邊形的面積的極限就是圓面積。劉徽考察了內接多邊形的面積,也就是它的“冪”,同時提出了“差冪”的概念。“差冪” 是後一次與前一次割圓的差值,可以用圖中陰影部分三角形的面積來表示。同時,它與兩個小黃三角形的面積和相等。劉徽指出,在用圓內接正多邊形逼近圓面積的過程中,圓半徑在正多邊形與圓之間有一段余徑。以余徑乘正多邊形的邊長,即2倍的“差冪”,加到這個正多邊形上,其面積則大於圓面積。這是圓面積的一個上界序列。劉徽認為,當圓內接正多邊形與圓是合體的極限狀態時,“則表無余徑。表無余徑,則冪不外出矣。”就是説,余徑消失了,余徑的長方形也就不存在了。因而,圓面積的這個上界序列的極限也是圓面積。於是內外兩側序列都趨向於同一數值,即,圓面積。


  郭書春(中國科學院自然科學史所研究員):

  在證明這個圓面積公式的時候有兩個重要思想,一個就是我們現在所講的極限思想。那麼第二步,更關鍵的一步,他把與圓周合體的這個正多邊形,就是不可再割的這個正多邊形,進行無窮小分割,再分割成無窮多個以圓心為頂點,以多邊形每邊為底的無窮多個小等腰三角形,這個底乘半徑為小三角形面積的兩倍,把所有這些底乘半徑加起來,應該是圓面積的兩倍。那麼就等於圓周長乘半徑等於兩個圓面積。所以一個圓面積等於半周乘半徑,所以劉徽説故半周乘半徑而為圓冪。那麼他的原話就是“以一面乘半徑,觚而裁之,每輒自倍。故以半周乘半徑而為圓冪”。最後完全證明了圓面積公式,

  證明了圓面積公式,也就證明了“週三徑一”的不精確。隨著圓面積公式的證明,劉徽也創造出了求圓周率精確近似值的科學程序。在劉徽之前古希臘數學家阿基米德也曾研究過求解圓周率的問題。


  李文林(中國科學院數學與系統科學研究院研究員):

  阿基米德算圓周率的方法,根據記載,他是通過圓內接正多邊形的邊長和圓外切正多邊形的邊長,從正六邊形開始加倍進行來逼近。

  在考慮圓的問題時,除了考察內接多邊形以外,又考察外切多邊形。是歷來數學家們常常使用的做法,似乎已約定俗成。而劉徽獨闢蹊徑,他利用“冪”和“差冪”來代替對圓的外切近似,巧妙地避開了對外切多邊形的計算,在計算圓面積的過程中收到了事半功倍的效果。劉徽用“差冪”對割到192邊形的數據進行再加工,通過簡單的運算,竟可以得到3072多邊形的高精度結果,附加的計算量幾乎可以忽略不計,這一點可謂是割圓術中最精彩的部分之一。正是基於這一運算,劉徽得出的圓周率,為3.1416,計算精度超過了阿基米德。


  圓面積的計算非常具有實用價值,而圓面積公式的證明則是一項抽象的數學推理論證過程。那麼《割圓術》又是在怎樣的背景下産生的呢?

  郭書春(中國科學院自然科學史所研究員):

  劉徽所處的時代是社會上軍閥割據,特別當時是魏、蜀、吳三國割據,那麼在這個時候中國的社會、政治、經濟發生了極大的變化,特別是思想界,文人學士們互相進行辯難,所以當時成為辯難之風,一幫文人學士找到一塊,就像我們大專辯論會那樣,一個正方一個反方,提出一個命題來大家互相辯論,在辯論的時候人們就要研究討論關於辯論的技術,思維的規律,所以在這一段人們的思想解放,應該説是在春秋戰國之後沒有過的,這時人們對思維規律研究特別發達,有人認為這時人們的抽象思維能力遠遠超過春秋戰國。

  劉徽在《九章算術注》的自序中表明,把探究數學的根源,作為自己從事數學研究的最高任務。他注《九章算術》的宗旨就是“析理以辭,解體用圖”。“析理”就是當時學者們互相辯難的代名詞。劉徽通過析數學之理,建立了中國傳統數學的理論體系。眾所週知,古希臘數學取得了非常高的成就,建立了嚴密的演繹體系。然而,劉徽的 “割圓術”卻在人類歷史上首次將極限和無窮小分割引入數學證明,成為人類文明史中不朽的篇章。(作者/秦雪竹)

責編:王雪  來源:CCTV.com

本篇文章共有 1 頁,當前為第 1 頁